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Abstract--This paper deals with the distribution of fluid temperatures in a direct contact heat exchanger. 
The exchanger is considered as a column with two immiscible fluids in countercurrent flow. None of the 
fluids undergoes a phase change so that only sensible heat is transferred. Equations for the mean tem- 
peratures of the fluids are derived analytically by integration of the one-dimensional energy equations. 
The influences of decisive parameters on the temperature distributions along the column are examined. 
Comparisons with experiments show a satisfactory agreement between calculated and measured fluid 

temperatures. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION AND PROBLEM FORMULATION 

As a result of the complex hydrodynamics, the heat 
transfer between immiscible fluids in direct contact 
heat exchangers cannot  be predicted with satisfying 
accuracy. In such heat exchangers one phase is usually 
dispersed as bubbles or droplets, which move irregu- 
larly in the other phase so that the hydrodynamic 
processes follow generally statistical laws. Approxi- 
mate considerations assume the processes to be one- 
dimensional and steady-state. 

Based on these assumptions, simple differential 
equations for the mean fluid temperatures have been 
obtained from energy balances. In the case of a coun- 
tercurrent flow arrangement, Fig. 1, the equations are 
given by Battya et al. [1] as 
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Fig. 1. Schematic of temperature distributions along a 

column. 

Pa Vdcr~ dTd 
A dz - ~ , (T~-  Td). (2) 

Here T denotes the mean fluid temperature in the 
cross-section A of the column, z the axial coordinate, 
p the fluid density, cp the specific heat capacity, 17 
the volume flow rate, av the volumetric overall heat 
transfer coefficient and r the axial dispersion 
coefficient. The subscripts c and d denote the variables 
pertinent to the continuous and dispersed phase, 
respectively. 

Equations (1) and (2) have been integrated numeri- 
cally by Battya et aL [1] using the boundary  conditions 

dTc 
z = 0 : T , =  T¢o d ~ - = 0  and Td---- Tdi. (3) 

The authors compared their numerical results with 
experimental data from the literature and found a 
satisfactory agreement at larger values of z. At the 
smaller values of z, however, the calculated tem- 
perature profiles of the continuous phase deviate from 
the measured. Whereas the experiments lead to tem- 
perature profiles with considerable slopes at z = 0, 
the gradients of the numerically obtained temperature 
distributions are zero there because of the chosen 
boundary  condit ion (z = 0 : dTJdz = 0). 

Shchuplyak et al. [2] obtained an analytical equa- 
tion for the temperature Tc of the continuous phase. 
According to the boundary  conditions used, the tem- 
perature change of the continuous phase is zero at the 
end of the column, that is, z = L : dTc/dz = 0, which 
is basically the same as specified in equation (3), 
because the position z = L in ref. [2] is identical with 
the position z = 0 in ref. [1]. 

A comment  seems to be appropriate concerning 
the temperature gradient dTo/dz = 0 as the boundary  
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A cross-sectional area of  column 
B parameter, equation (7) 
C parameter, equation (7) 
q, specific heat capacity 
D column diameter 
(; parameter, equation (7) 
K,), K~. K~ constants of  integration, 

equations (18) (20) 
l. column height 
M~,M. parameters, equation (21) 
N~. N_. parameters, equation (22) 
Y temperature 
l" volume flow rate. 

Greek symbols 
overall heat transfer coefficient 

NOMENCLATURE 

/,- 

0 

;1 
~p 

root of  characteristic equation 
axial dispersion coefficient 
dimensionless temperature difference, 
continuous phase 
dimensionless axial coordinate 
dimensionless temperature difference, 
disperse phase. 

Subscripts 
c continuous phase 
d disperse phase 

volumetric 
i inlet 
o outlet. 

condition% Such a boundary condition, certainly con- 
venient for a mathematical treatment of the problem. 
can hardly represent the physical reality in a general 
case when the fluids possess different temperatures 
( T~ ~ Ta) at any position : along the column and heat 
is transferred between them. 

To underline our doubts, we consider a stationary 
fluid element exposed to the same environment as it 
exists along a flow path of  this element through the 
heat exchanger. As long as the temperature of  the 
environment is different from that of the fluid element, 
the temperature 7' of the fluid element changes with 
time t and the derivative dT/dt  is different from zero. 
If we now, at a certain time t - ~, suddenly interrupt 
any heat exchange with the environment, the deriva- 
tive dT/dt at this moment is still different from zero. 
For t > r the derivative dT:dt is zero. whereas the 
temperature T of  the fluid element retains its value 
reached at the end of  the exposure time. 

The transition state of  the stationary fluid element 
considered here can at any instant of  the exposure 
time be attributed to the position of  the fluid element 
which moves through the heat exchanger. The relation 
is given by the instantaneous velocity of  the fluid 
element. If the flow in the exchanger is. for example, 
of  piston-type with a constant velocity, the axial pos- 
ition of  the fluid element along the flow path is directly 
proportional to the exposure time. The exposure time 
can, of course, be chosen so that the fluid element 
arrives at the column end. Then the heat transfer with 
the environment is suddenly interrupted and we have 
at the moment of  interruption dT/dt  4: O, respectively 
d T/dz :~ 0. 

+ A boundary condition of this kind has been used for the 
first time by Danckwerts [3] who considered the con- 
centration change of a reacting fluid flowing through a bed 
of stationary solid particles. 

The main purpose of our paper, however, is to 
show that equations (1) and (2) can be integrated 
analytically. The coefficients in the equations are con- 
sidered as independent of  the axial position. The inte- 
gration constants are determined using boundary con- 
ditions specified on the basis of  the fluid temperatures. 
The analytically obtained temperature distributions 
are verified by comparison with experiments. 

INTEGRATION OF THE DIFFERENTIAL 
EQUATIONS 

For the sake of  simplicity, we use the following 
transformations : 

: L L .  Td-Tj~ 
q =  L O -  I~,,-T,,, and ~P-  Lo T~,, (4) 

With these relations, equations (I) and (2) take the 
ibrms 

de0 dO 
+ B  7 - ( 7 ( 1 + 0 )  = - C q )  

dq 2 ml 
(5) 

d(p 
+G~p = G(1 +0)  (6) 

d*l 

where B. ( '  and G are nondimensional parameters 
given by 

B = (~L C =x,L: ~,LA 

[t should be noted that these parameters have alre- 
ady been introduced by Battya et al. [1]. They used, 
however, the diameter D of the column as the scaling 
length instead of  the column height L, so that the 
parameters B, C and G as given above differ from 
those of  Battya et al. In context with this. it should 
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also be mentioned that equations (5) and (6) do not 
agree with the corresponding equations in the paper 
of Battya et al. [1] due to the different definitions of 
the nondimensional temperature 0 and q~. 

In order to separate the functions 0 and ~o in equa- 
tions (5) and (6) from each other, equation (5) is 
derived with respect to r/, giving 

d30 +Bd20 C dO 

d. 3 3 -  (8) 

Elimination of q~ and d~0/dr/from equations (5), (6) 
and (8) leads to the following differential equation : 

d30 d20 dO 
- -  + a l ~ q 2  + a 0 ~  = 0 (9) dq 3 

with 

ao = B G -  C (10) 

a~ = B + G .  (11) 

Integration of equation (9) yields 

0 = K0 +Kl  e~'"+K2 e ~:" (12) 
a0 

where K0, KI and/(2 are constants of integration; Zl 
and 22 are the roots of the characteristic equation and 
are determined from 

21 = - a l  +x~2j2-4a0 (13) 
2 

'~2 = - - a l - - ~  (14) 
2 

The function ~0 is obtained from equation (5) by 
inserting the function 0 according to equation (t2) 
and its derivatives. This leads to the expression 

__ ( 2 ~ + B 2 1 )  q~= l + K ° + K t  1 e ~," 
a0 C 

+ K 2 (  1 222+B22~ ~ ) e  '2 . (15) 

For  the reasons explained above, the temperature 
gradient used by previous authors, see equation (3), 
will not be considered in the present paper as a boun- 
dary condition. This condition is replaced by the cor- 
responding fluid temperature. 

In practical applications, the temperatures of one 
of the fluids at the inlet and outlet of the heat 
exchanger are usually known. Since one temperature 
of the other fluid is also known, an energy balance 
leads to the missing fluid temperature?. The boundary 

~" Possible temperature changes prior to mixing and after 
separation of the fluids must be taken into account in the 
determination of the temperatures used for boundary con- 
ditions. Such temperature changes depend generally on the 
exchanger design. 

conditions may thus be specified as follows (see Fig. 
1): 

Z 
= ~ = 0 :  ~ = ~ o  and Td=Td~,  

that i s 0 = 0  and q9=0 (16) 

~/= 1 : Ta = Tdo, that is q~ = tpo. (17) 

These conditions lead to the following expressions 
for the constants of integration : 

N2 --Nl -- (~Oo-- I)(M2 --M1) 
K 0 = -  a0 (18) 

M j N 2  - M2NI  

N2 - (q~o - 1) M2 
Kj = (19) 

M1 N2 -- M2 NI 

Nl -- (~Po -- I)MI 
K2 = - (20) 

M I N 2  - M 2 N 1  

Here M~, M2, Ni and N2 are given as 

22 +B21 22 +B).2 
M, - ~ M 2 -  C (21) 

NI = ( 1 - M 0 e a ' - I  N2 = ( 1 - - M 2 ) ¢ 2 - 1 .  

(22) 

From equation (12) and (15), together with equa- 
tions (18)-(22), the nondimensional temperatures 0 
and q~, as functions of the nondimensional axial coor- 
dinate t/, can be evaluated. 

DISCUSSION OF RESULTS 

Using equations (l 2) and (15), the nondimensional 
temperatures 0 and ~0 were calculated for numerous 
values of the parameters B, C and G. The calculations 
revealed a relatively weak influence of the parameters 
B and C on the fluid temperatures in comparison with 
that of the parameter G. Therefore, only the influences 
of the parameter G on the temperatures 0 and ~o are 
demonstrated in Fig. 2 for heating and in Fig. 3 for 
cooling of the disperse phase. 

As follows from these Figures, the higher values of 
the parameter G lead to a stronger change of the 
temperature q~, particularly in the vicinity of the inlet, 
~/= 0, of the disperse phase. An increase in G shifts 
the curves 0 and q~ closer together. Such a behaviour 
was expected because the parameters B and C, charac- 
terizing the continuous phase, remain constant. In 
this case, a variation of the parameter G is mainly 
associated with a variation of the flow rate of the 
disperse phase. Therefore, a higher flow rate of this 
phase leads to a stronger temperature change of the 
continuous phase. 

The validity of the analytical solutions is proved by 
comparison of the calculated temperatures with the 
experiments from the literature, Figs 4-6. The exper- 
imental and numerical results, obtained by different 
authors [1, 4, 5], were taken from the paper of Battya 
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Fig. 2. Temperature changes along the column during heating of the disperse phase. 
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Fig. 3. Temperature changes along the column during cooling of the disperse phase. 
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Fig. 4. Comparison of predicted temperatures with numerical [1] and experimental [4] data. 
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Fig. 5. Comparison of predicted temperatures with numerical [1] and experimental [4] data. 
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Fig. 6. Comparison of predicted temperatures with numerical [1] and experimental [5] data. 

et al. [1]. The values of the parameters B, C and G 
given in the figures were determined from those of 
Battya et  al. using the column height L as the charac- 
teristic length. 

The figures show clearly that the analytical solu- 
tions agree, on average, significantly better with the 
experiments than the numerical results. In contrast to 
the numerically obtained temperatures, the analytical 
solution describes correctly the temperature slope of 
the continuous phase at the inlet, z = 0, of the disperse 
phase. The discrepancies between the analytical and 
the numerical temperature distributions are probably 
caused by the use of one different boundary condition. 

C O N C L U S I O N S  

Equations for the mean fluid temperatures in direct 
contact heat exchangers with countercurrent flow of 
continuous and disperse phase were derived by an 
analytical solution of the energy equations. Thermal 
properties of the phases, axial dispersion in the con- 
tinuous phase and heat transfer conditions were con- 
sidered as independent of the flow path. The constants 

of integration were obtained from boundary con- 
ditions specified on the basis of the fluid temperatures. 

Comparisons of the analytically obtained fluid tem- 
peratures with experiments from the literature showed 
satisfactory agreement. The analytical solution repro- 
duces also the slope of the temperature profile of the 
continuous phase at the outlet of the column. This 
good agreement confirms the explanations associated 
with the temperature gradient of the continuous 
phase. Therefore, the vanishing temperature gradient 
of the continuous phase at the column outlet fre- 
quently used in the literature [1, 2, 4] as a boundary 
condition (originally formulated by Danckwerts [3] 
for mass transfer) does not represent the physical 
reality. 

The equations for the temperature distributions 
derived in this paper may also serve as a basis for the 
evaluation of concentration distributions in the mass 
transfer operations of binary systems. 
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